Molecular and proteomic analyses highlight the importance of ubiquitination for the stress resistance, metabolic adaptation, morphogenetic regulation and virulence of Candida albicans

نویسندگان

  • Michelle D Leach
  • David A Stead
  • Evelyn Argo
  • Donna M MacCallum
  • Alistair J P Brown
چکیده

Post-translational modifications of proteins play key roles in eukaryotic growth, differentiation and environmental adaptation. In model systems the ubiquitination of specific proteins contributes to the control of cell cycle progression, stress adaptation and metabolic reprogramming. We have combined molecular, cellular and proteomic approaches to examine the roles of ubiquitination in Candida albicans, because little is known about ubiquitination in this major fungal pathogen of humans. Independent null (ubi4/ubi4) and conditional (MET3p-UBI4/ubi4) mutations were constructed at the C. albicans polyubiquitin-encoding locus. These mutants displayed morphological and cell cycle defects, as well as sensitivity to thermal, oxidative and cell wall stresses. Furthermore, ubi4/ubi4 cells rapidly lost viability under starvation conditions. Consistent with these phenotypes, proteins with roles in stress responses (Gnd1, Pst2, Ssb1), metabolism (Acs2, Eno1, Fba1, Gpd2, Pdx3, Pgk1, Tkl1) and ubiquitination (Ubi4, Ubi3, Pre1, Pre3, Rpt5) were among the ubiquitination targets we identified, further indicating that ubiquitination plays key roles in growth, stress responses and metabolic adaptation in C. albicans. Clearly ubiquitination plays key roles in the regulation of fundamental cellular processes that underpin the pathogenicity of this medically important fungus. This was confirmed by the observation that the virulence of C. albicans ubi4/ubi4 cells is significantly attenuated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hsp90 Orchestrates Temperature-Dependent Candida albicans Morphogenesis via Ras1-PKA Signaling

BACKGROUND Hsp90 is an environmentally contingent molecular chaperone that influences the form and function of diverse regulators of cellular signaling. Hsp90 potentiates the evolution of fungal drug resistance by enabling crucial cellular stress responses. Here we demonstrate that in the leading fungal pathogen of humans, Candida albicans, Hsp90 governs cellular circuitry required not only for...

متن کامل

Pho4 mediates phosphate acquisition in Candida albicans and is vital for stress resistance and metal homeostasis

During interactions with its mammalian host, the pathogenic yeast Candida albicans is exposed to a range of stresses such as superoxide radicals and cationic fluxes. Unexpectedly, a nonbiased screen of transcription factor deletion mutants revealed that the phosphate-responsive transcription factor Pho4 is vital for the resistance of C. albicans to these diverse stresses. RNA-Seq analysis indic...

متن کامل

Lipase Gene Expression of Resistant and Sensitive Candida Albicans to Fluconazole Isolated from Patients Suffering from Oral Candidiasis and Vaginal Candidiasis

Abstract Background and Objective: With the development of drug resistance in strains of fungi, there is a considerable resistance of Candida albicans strains to fluconazole. Molecular studies are developing to determine the relationship of such a drug resistance with the increased gene expression of enzymes produced in drug-resistant Candida isolates. We aimed to evaluate the relationship betw...

متن کامل

Relation of ALS 1 and ALS3 genes and fluconazole resistance in Candida albicans isolated from vaginal candidacies

Candida albicans is an opportunistic fungi that is able to thrive in many host niches, including the skin, mucosal, surfaces, the blood stream and internal organs. Agglutinin-like sequence (ALS) genes which could play a role in forming biofilms, adherence to host surfaces as a virulence factor and antifungal drug resistant. The purpose of the present study was to evaluate the presence ALS1 and ...

متن کامل

Glucose promotes stress resistance in the fungal pathogen Candida albicans.

Metabolic adaptation, and in particular the modulation of carbon assimilatory pathways during disease progression, is thought to contribute to the pathogenicity of Candida albicans. Therefore, we have examined the global impact of glucose upon the C. albicans transcriptome, testing the sensitivity of this pathogen to wide-ranging glucose levels (0.01, 0.1, and 1.0%). We show that, like Saccharo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2011